Idaho Numeric Nutrient Target Development

Idaho Department of Environmental Quality Josh Schultz josh.schultz@deq.idaho.gov

Current Nutrient Standard

• 06. Excess Nutrients. Surface waters of the state shall be free from excess nutrients that can cause visible slime growths or other nuisance aquatic growths impairing designated beneficial uses.

Numeric Criteria Background

- National Push for Numeric Nutrient Criteria on a National level
 - Including Idaho
- Ecoregional Criteria
 - Xeric West
 - Western Forested Mountains
 - Did not account for variability in nutrient concentrations
 - Idaho is large State
- Idaho has considered numeric criteria before...
 - -1999
 - Early 2000's
 - 2003 2007 no significant correlation (periphyton: nutrients)
 - Currently in partnership with Tetra Tech

The role of numeric nutrient criteria in Idaho

- Retain Narrative criteria
 - Couple with numeric
 - Serve as trigger values
 - Follow monitoring and investigation
- Future Steps
 - Verify results of the current project
 - Statewide
 - Increase sample size of reference sites

Project Data

- Dataset
 - 2004 + 2013 field seasons
 - >200 sites
 - Reference and stressed
 - GIS
- Dataset includes:
 - Diatoms, periphyton assemblages, algal biomass, chlorophyll a, TN, TP, TKN, N+N, ammonia, phosphate, pH, DO
 - Algal and habitat qualitative ratings (2013)

Reference Site Selection

- Site selection accounts for natural variability in nutrient concentrations
- Reference sites defined using measures of human activity in watershed
 - pop, % natural land use, disturbance, roads, diversions, NPDES, dams, grazing, riparian pressure
- Evenly distributed across Idaho

Project Questions

- 1) Can visible slime growths or nuisance aquatic growths be defined quantitatively?
- 2) Are nutrients associated with these growths in a stressor-response context?
- 3) Can nutrient benchmarks be established to protect against unwanted visible slime growths or nuisance aquatic growths?

Project Goals

- Nutrient endpoints determined from frequency distribution analysis
- Nutrient endpoints determined from modeled reference expectation
- Nutrient endpoints from stressor response analysis

Analytical Goals

- Use the quantitative data from 2004 and 2013 to support some of the linkages in the conceptual model
- Emphasis was on nutrients (TN and TP)
- Diatoms were the primary response
- Establish expectations for nutrient conditions
 - Found in least disturbed sites
 - Aligned with better diatom metric values

Analytical Steps

- Define the disturbance gradient
- Distinguish nutrient site classes
- Characterize nutrient distributions
- Model reference conditions
- Stressor-response analysis
 - Change-points
 - Regression interpolation

Sites Reference status Reference Sub-reference Other Stressed

Disturbance Gradient

- 29 of 208 sites
 were reference
- Mountain sites
 were more likely
 to be reference
- Also found stressed sites

TP Site Classes

 Low, Moderate, and High Precipitation (High precip in mtns)

TN Site Classes

Mountains, Foothills, & PPBV (like biological indicators)

Distribution Statistics

Reference only

All sites

Modeled Reference Conditions

TP: Linear regression with land use

Intersection with zero disturbed land = 0.02 mg/L

Quantile Regression

TP: against the reference index

Predict 75th quantile at the highest index value (8)

In Site Classes

Change-points with Diatom Metrics

CP can be identified for the diatom index and metrics

Validity of CPs are scrutinized:

Loess & Quantile Regression

Linear Regression Interpolation

At a given value of the index, what is the value of the nutrient?

Synthesis of Multiple Thresholds

 Use multiple lines of evidence

 Emphasis on reference approaches

